Numerical low-rank approximation of matrix differential equations
نویسندگان
چکیده
منابع مشابه
Using operational matrix for numerical solution of fractional differential equations
In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the pro...
متن کاملLocal Low-Rank Matrix Approximation
Matrix approximation is a common tool in recommendation systems, text mining, and computer vision. A prevalent assumption in constructing matrix approximations is that the partially observed matrix is of low-rank. We propose a new matrix approximation model where we assume instead that the matrix is locally of low-rank, leading to a representation of the observed matrix as a weighted sum of low...
متن کاملLow rank differential equations for Hamiltonian matrix nearness problems
For a Hamiltonian matrix with purely imaginary eigenvalues, we aim to determine the nearest Hamiltonian matrix such that some or all eigenvalues leave the imaginary axis. Conversely, for a Hamiltonian matrix with all eigenvalues lying off the imaginary axis, we look for a nearest Hamiltonian matrix that has a pair of imaginary eigenvalues. The Hamiltonian matrices can be allowed to be complex o...
متن کاملSchur method for low-rank matrix approximation
The usual way to compute a low-rank approximant of a matrix H is to take its truncated SVD. However, the SVD is computationally expensive. This paper describes a much simpler generalized Schur-type algorithm to compute similar low-rank approximants. For a given matrix H which has d singular values larger than ε, we find all rank d approximants Ĥ such that H − Ĥ has 2-norm less than ε. The set o...
متن کاملLow Rank Matrix Approximation in Linear Time
Given a matrix M with n rows and d columns, and fixed k and ε, we present an algorithm that in linear time (i.e., O(N)) computes a k-rank matrix B with approximation error ‖M−B‖2F ≤ (1+ ε)μopt(M, k), where N = nd is the input size, and μopt(M, k) is the minimum error of a k-rank approximation to M. This algorithm succeeds with constant probability, and to our knowledge it is the first linear-ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2018
ISSN: 0377-0427
DOI: 10.1016/j.cam.2018.01.035